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Lattice-switch Monte Carlo method

A. D. Bruce, A. N. Jackson, G. J. Ackland, and N. B. Wilding
Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United Kingdom

~Received 20 August 1999!

We present a Monte Carlo method for the direct evaluation of the difference between the free energies of
two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one
structure onto a candidate configuration of the other by ‘‘switching’’ one set of lattice vectors for the other,
while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement
configurations is biased, multicanonically, to favor paths leading togatewayarrangements for which the Monte
Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be
efficiently sampled in a single process, and the difference between their free energies evaluated from their
measured probabilities. We explore and exploit the method in the context of extensive studies of systems of
hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch
conserves correlated microstructure. We also show how, microscopically, the procedure works: the system
finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the
differences between the free energies of the two close packed structures~fcc and hcp! in both the constant
density and the constant pressure ensembles.

PACS number~s!: 05.10.Ln, 65.50.1m, 64.70.Kb
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I. INTRODUCTION

Let us pose the problem. We are presented with a mate
whose chemical composition is known; we are provided w
a model of the interatomic interactions; and we have ide
fied two candidate crystalline structures. How should we p
ceed to determine which structure will be favored und
given conditions? Of course, equilibrium statistical mech
ics tells us what we must do, in principle: the favored stru
ture will be that which has thegreater a priori probabilityor
configurational weightor, in equivalent thermodynamic pa
lance, lower free energy. Thus the task is tocomparethe
configurational weights of~determine thedifferencebetween
the free energies of! the candidate structures.

A variety of approximate strategies exist for address
this problem@1#. But it is clear that if one desires a techniqu
that is both generally applicable and reliable~that is, has
quantifiable uncertainties! one must look to the Monte Carl
~MC! method@2#, the standard computational tool for dea
ing with many-body systems@3#.

The application of MC methods to the study of phas
behavior presents a generic problem@4,5#: the free energy of
a phase cannot be expressed~in a practically useful form! as
a canonical average over the associated configurations;
energy-estimation inevitably entails simulations that visi
substantially wider spectrum of configurations, which
gether form apath through configuration space@6#. The stra-
tegic choices to be made concern the path itself—ultimat
the physical character of the additional configuratio
sampled—and the sampling procedure.

An acceptable path will fall into one or other of tw
categories—we will call them reference-state and interph
paths. A reference-state path links~comprises sets of con
figurations that interpolate between! the configuration space
associated with each phase to the configuration space a
ciated with some reference system@7# whose free energy is
known. An interphase path links the configuration space
PRE 611063-651X/2000/61~1!/906~14!/$15.00
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one phase to that of the other. Both categories of path
brace many further subcategories. Thus, a reference-s
path may run through a space of thermodynamic coordin
or through a space of model parameters. An interphase
may be ‘‘physically motivated’’—modeling authentically th
configurations through which a system actually passes in
course of a phase transformation or it may be ‘‘computati
ally motivated’’ ~‘‘nonphysical’’!—designed, pragmatically
to deliver a result.

The sampling procedures used to explore the chosen
also fall, broadly, into one or other of two categories – w
will call them multistage and single stage. The multista
approach entails aseriesof independent simulations each o
which explores a different point on the path; the simulatio
may determine simply the derivative of the free energy
each point@the integration method~IM !# or the difference
between the free energies of adjacent points~the overlap
method!. The single-stage approach involves, in essenceone
simulation exploring theentire path.

There are very many ways in which one can respond
these strategic choices. Many of them are represented in
large literature devoted to this problem@8–14#. But all of
them, in our view, lack one or more of the characterist
~generality, transparency, precision! of a definitively satisfac-
tory solution to such a fundamental and simply posed pr
lem.

In seeking that solution it seems to us there are gooa
priori grounds for favoring an inter phase path, explored
single-stage sampling. The prejudice on the choice of p
reflects the fact that, in using a reference state path, one
to determine, separately, the absolute free energies of
phase. These absolute free energies are typically v
large—arbitrarily so in the vicinity of a phase boundary—
compared to the quantity~their difference! which is actually
of interest. In contrast, using an interphase path allows on
focus directly on this quantity. Thea priori preference for a
single-stage sampling rests on the transparency with wh
906 ©2000 The American Physical Society
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FIG. 1. Schematic representations of the d
ferent ways in which multicanonical samplin
methods can be used to achieve interphase cr
ing. In the conventional approach~a! the sam-
pling algorithm is biased so as to enhance t
probability of themixedphase states lying along
a path~the heavy dark line! linking the two re-
gions of configuration space. In the lattice-switc
method ~b! the bias is constructed so as to e
hance the probability of the subsets of states~the
white islands!, within the single-phase regions
from which the switch operation~the large
dashed arrow! will be accepted.
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the associated uncertainties~error bounds! are prescribed.
We shall return to these points in Sec. V. With these strate
choices made, one is left with two tasks—one concep
~designing the interphase path! and the other practical~for-
mulating the sampling algorithm!.

The practical issue is relatively easily addressed. In rec
years, the Monte Carlo toolkit has been significantly e
hanced to provide a range of extended sampl
techniques—multicanonical@15#, expanded ensemble@16#,
and simulated tempering@17#. These methods~whose origins
can be traced back to much earlier pioneering work@18#!
allow one to construct a MC procedure that will traver
virtually any desired path through configuration space. H
we adopt the multicanonical framework. In this framewo
the desired path is represented as a discrete series of
rostates, defined by some chosen macroscopic property@6#;
in the multicanonical sampling procedure each macrosta
visited with a probability that is enhanced, or diminishe
with respect to its canonical value, by an amount that
controlled by amulticanonical weight; the set of weights is
constructed so that, while the canonical probabilities v
vastly over the path, the multicanonical probabilities are
sentially constant, allowing the whole path to be negotia
in one simulation.

The core issue is, then, thedesign of the interphase
path—at heart, the choice of an appropriate order param
@19#. The choice is important: it determines, implicitly@20#,
the nature of the configurations sampled during the in
phase traverse, the MC time required for that traverse,
thence the statistical quality of the final results.

Outside the context ofstructural-phase behavior—in the
case of liquid-gas phase behavior, for example—the cho
is clear and a multicanonical strategy is securely in pla
The order parameter is identified with that—the density
associated with the accompanying critical point. The res
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ing interphase configurations are then genericallyinhomoge-
neous, comprising two coexisting regions~one of each
phase!, separated by an interface. On this path, it is the f
energy cost of this interface that provides the ergodic bar
which has to be surmounted by multicanonical weighti
@21#. The passage along the path~the motion of the interface!
involves processes which differ only in scale from those
ready represented in the microscopic dynamics of a sin
phase. This approach is illustrated schematically in Fig. 1~a!.
It has been successfully used in studies of phase behavi
ferromagnets@22#, fluids @23#, and lattice gauge theorie
@24#.

In the context ofstructural phase behavior it is clear tha
this kind of strategy will seldom be fruitful@25,26#. In such
systems a traverse through an inhomogeneous two-p
~necessarily noncrystalline! region will involve substantial,
physically slow, restructuring—vulnerable to further ergod
traps, and compounding the intrinsic slowness of the mu
canonical sampling process. To the two generala priori pref-
erences expressed above we thus add a third, specific to
structural context: the interphase path should comprise m
rostates that are single phase and crystalline. This pa
shows how to identify, build, and exploit a path of this kin

The key ideas are simple. In any crystalline configurat
each atomic position coordinate may be expressed as the
of a lattice vector and a displacement vector. The configu
tion space associated with each structure, individually, m
be explored by standard MC procedures which stochastic
update the displacement vectors while keeping the lat
vectors constant. Inprinciple the passage from one phase
the other may be accomplished by a lattice switch~LS! in
which one entire set of lattice vectors is replaced with
other, while the displacement vectors are held fixed. F
mally this LS can be incorporated into the MC procedu
simply by treating the lattice type as an additional stocha
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908 PRE 61BRUCE, JACKSON, ACKLAND, AND WILDING
variable. In practicethis interphase ‘‘path’’~blind leap! will
not work. Implemented this way the LS will map a ‘‘typ
cal’’ configuration of one structure onto an ‘‘untypical
~high-energy! conjugate configuration@27#; the associated
MC step will generally be rejected. To make it work the L
needs to be extended to include two segments of ‘‘pa
~each lying entirely within one phase! which connect the set
of equilibrium configurations with the special configuratio
~we will call them gateway configurations! from which a
successful LS can be initiated@28#. These path-segment
may be labeled by an ‘‘order parameter’’ which measures
mismatch between the energies of the configurations lin
by LS. This order parameter has a high value for the eq
librium configurations, lying at one end of a path segme
these configurations are not energy matched@29# to their
conjugates. It has a low value for the gateway configurati
at the other end: gateway configurations~whatever other at-
tributes they may have! are necessarily energy matched
their conjugates. Multicanonical weights are attached to
macrostates of this order parameter, so that the multican
cal sampling procedure explores both path segments eve
surmounting the probabilistic barrier which, in this case,
flects thesmallnessof the statistical weight of the gatewa
configurations. Together, the multicanonical sampling a
the lattice switch provide a configuration space ‘‘look a
leap’’ @Fig. 1~b!# which visits both phases while remaining
all times crystalline.

The LS method was introduced by us and described
outline form in an earlier brief communication@30#. Since
that time it has been applied by two other groups@14,31#.
The present paper has three principal objectives.

The first objective~with which we have already engage
in the preceding discussion! is to explain the core idea mor
fully: the ‘‘idea’’ ~biased sampling to facilitate a global co
ordinate change! represents, we believe, a significantly ne
form of extended sampling, which merits further exposur

Our second objective is to achieve a deeper understan
of how the process works—in particular the implications
the form chosen for the LS operation adopted~it is not
unique! and the microscopic character of the gateway c
figurations which the system locates in response to the m
ticanonical weighting, tailored to support that operation. W
show that the efficiency of the LS operation depends sign
cantly on the extent to which it conserves correlated mic
structure. And we find that the gateway configurations h
features which reflect the specific nature of the lattice-sw
transformation we adopt, in a microscopically intelligib
~even intelligent! way.

Our third objective is to extend our study of the pha
behavior of hard spheres. This problem is of enduring in
est, displaying a richness that belies the simplicity of
model itself @32#. The relative stability of the two closed
packed ~fcc and hcp! structures is particularly finely bal
anced: the entropy difference@33# is so small~smaller than
the entropy change at freezing by of order 1023) that it can
easily be lost in statistical uncertainties. Discrepancies~large,
in relative terms! between a recent IM study@10# and its
predecessors@9# provided the motivation for our develop
ment of the LS method. In this paper we present results
the constant-density ensemble, both near the melting den
and at the close-packed limit. In so doing we resolve
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discrepancy between the results, near melting, reporte
our initial study @30# and those—also using LS—reporte
recently by Pronk and Frenkel@31#: the fault was ours, stem
ming from a failure to recognize the consequences of cen
of-mass drift. We also show that the method can be exten
straightforwardly—in this case at least—to the consta
pressure ensemble.

The paper is structured as follows. Section II sets out
theoretical framework. We define the model, the compet
structures, and the associated configurational weights: in
case of hard sphere systems the latter are purely entropic
identify an appropriate form of lattice-switch transformatio
here, it is designed to capitalize on the close-packed lay
common to both structures. To bias the displacement s
pling we need to define an appropriate measure of the ‘‘
ergy cost’’ of the lattice switch; we will see that the numb
of pairs of overlapping spheres created by the transforma
fulfills this role simply and effectively. The efficiency of th
method also potentially depends on the choice of represe
tion of both the lattice-to-lattice mapping and the partic
displacements: we discuss the principles involved in
choice of representation. Section III provides computatio
implementation details, including the procedures used
evolve an appropriate multicanonical sampling distributio
Section IV contains our results. Finally, in Sec. V, we off
our conclusions in relation to both the hard sphere sys
and the lattice-switch method.

II. FORMULATION

A. The model system

We consider a system ofN particles, of spatial coordi-
nates$rW%, confined within a volumeV, and subject to peri-
odic boundary conditions. The interactions are those of h
spheres of diameterD; the configurational energy is of th
form

E~$rW%!5H 0 if r i j >D ; i , j ,

` otherwise,
~1!

wherer i j 5urW i2rW j u. The total configurational weight assoc
ated with this system is

V~N,V!5)
i

F E
V
drW i G)̂

i j &
Q~r i j 2D !, ~2!

whereQ(x)[1(0) for x>0(,0), and the product on̂i j &
extends over all particle pairs. The associated entropy d
sity is

s~N,V![
1

N
ln V~N,V!. ~3!

We are concerned with the entropy of specific phases~the
two familiar crystalline close-packed structures! of this sys-
tem. In general, the entropy of a phase measures the we
of the configurations satisfying some constraint that is ch
acteristic of that phase. It is therefore necessary in princ
~although in practice the issue is typically skirted! to formu-
late a constraint that identifies a configuration as ‘‘belong
to’’ a given crystalline phase. One can do so—very natura
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PRE 61 909LATTICE-SWITCH MONTE CARLO METHOD
and in the traditions of lattice dynamics@34#—by decompos-
ing the particle position coordinates into a sum of ‘‘lattice
and ‘‘displacement’’ vectors:

rW i5RW i
a1uW i . ~4!

Here$RW %a[RW i
a ,i 51, . . . ,N is a set of fixed~configuration-

independent! vectors associated with the crystalline structu
labeleda. We will refer to them as ‘‘lattice vectors.’’ But we
use this term a little loosely: more precisely, we mean the
of vectors identified by the orthodox crystallographic lattic
convolved with the orthodox basis@35,36#. The other vectors

$uW % represent displacements with respect to the ‘‘lattic
sites; the symmetry of the structures of interest here ens
that these displacements have zero ensemble average.
framework provides us with a number of ways of identifyin
the configurations to be associated with structurea. First,
one might adopt the criterion that all particle displacemen
with respect to the associated lattice sites, lie within so
nominatedspatial cutoff, chosen to be sufficiently large tha
the results are independent of its specific value. This cr
rion has the merit that it does not stray beyond the conc
of equilibrium statistical mechanics. Alternatively one mig
identify the relevant configurations as the set that are ac
sible from somemember of the set~the perfect crystalline
state, for example! within some nominatedtemporalcutoff.
The merit ofthis choice is that it is a quasiformal expressio
of what, in practice, computer simulation attacks on t
problem actuallydo, albeit implicitly: the free energy as
signed to a phase~in, for example, IM-based studies! repre-
sents the weight of the configuration space sampled on
time scale of the simulation. The result should be indep
dent of that time scale provided it~the scale! is long enough
that the configuration space of each structure is effectiv
sampled, but still short compared to interphase cross
times. Whichever view one takes~in practice we adopt the
latter: see Sec. III A! one may write, for the configurationa
weight associated with structurea

V~N,V,a!5)
i

F E
a
duW i G)̂

i j &
Q~r i j 2D !, ~5!

where*a signifies integration subject to the chosen config
rational constraint.

In the thermodynamic (N→`) limit, the associated en
tropy density

s~N,V,a![
1

N
ln V~N,V,a! ~6!

depends only on the particle number density, which we w
in the dimensionless form

r̃[
r

rCP
[

N/V

A2/D3
, ~7!

where rCP, the number density at close packing, provid
the natural scale. The range of interest to us here exte
from the melting densityr̃.0.736@37# through to the close-
packed limitr̃51.
et
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In the close-packed limit the configurational integral@Eq.
~5!# may be rewritten@38# as the product of two terms:

V~N,V,a!5V0~N,V!Va ~8!

The first term here is defined by

V0~N,V!5F De

12eG3N

~9a!

with

e[12 r̃1/3. ~9b!

The associated contribution to the entropy is logarithmica
divergent in the close-packed limit@39#, but independent of
the phase. The second contribution to the configurationa
tegral is defined by

Va5)
i

F E
a
duW i G)̂

i j &

nn

Q~ui j
uu 11!@11O~e!#, ~10a!

where@40#

uW i j [uW i2uW j[ui j
uu n̂i j

a 1uW i j
' ~10b!

while n̂i j
a is a unit vector from lattice sitej to nearest neigh-

bor lattice sitei. The associated contribution to the entropy
finite, but depends on the phase through the geometry of
nearest neighbor vectors. It may be visualized as that of a
of hard dodecahedra@41#.

Now let us recall that the quantity of immediate interest
the difference between the entropy densities of the tw
phases. It may be written as

Dsab[s~N,V,a!2s~N,V,b!5
1

N
ln Rab~N,V!, ~11!

where

Rab~N,V![
V~N,V,a!

V~N,V,b!
5

P~auN,V!

P~buN,V!
. ~12!

Here P(auN,V) is the probability that a system, free to e
plore the joint configuration space of the two structures~and
visiting configurations with the appropriate probabilities—
equal in this case! will be found in some configuration o
structurea.

In the constant density ensemble, then, the computatio
task is to determine the ratio defined by Eq.~12!. In the
constant pressure ensemble we require the ratioRab(N,P!)
of the partition functions

Z~N,P!,a!5E dVV~N,V,a!e2P!V, ~13!

whereP! is a measure of the pressure@42#. The associated
thermodynamic potential is the Gibbs free energy den
defined by

g~N,P* ,a![2
1

N
ln Z~N,P!,a! ~14!
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so that, in analogy with Eq.~11!,

Dgab[g~N,P!,a!2g~N,P!,b!52
1

N
ln Rab~N,P!!.

~15!

B. The lattice-switch method

The two close-packed structures of interest here
shown schematically in Fig. 2. In principle there are ma
transformations which will map one set of lattice vectors in
the other; we shall consider the criteria guiding the choice
Sec. II C. The mapping used in most of the work repor
here is shown schematically in Fig. 3. This scheme expl
the fact that the two structures differ only in respect of t
stacking pattern of the close-packed planes. A suitable tr
formation can then be constructed that entails, simply,trans-
lating appropriate close-packed planes. By ‘‘translate’’ w
mean, more precisely, ‘‘relocate at a position defined by

FIG. 2. Schematic representations of the two close-pac
structures. The structures differ only in regard to the stack
pattern of the close-packed (x-y) planes which are of the form
ABCABC••• for fcc ~upper! andABAB••• for hcp ~lower!. The

vector labeledtW is instrumental in defining the LS operation, show
in Fig. 3.

FIG. 3. The LS transformation applied to the perfect-crys
configuration. The diagram shows 6 close-packed (x-y) layers.
@The additional bracketed layer at the bottom is the periodic im
of the layer at the top.# The circles show the boundaries of ha
spheres located at the sites of the two close-packed structure
this realization of the fcc→hcp lattice switch, the top pair of plane
are left unaltered, while the other pairs of planes are relocated

translations, specified by the vectors2 tW ~white arrows! and tW

~black arrows!. The vectortW is identified in Fig. 2.
re
y

n
d
ts

s-

n

appropriate translation vector’’: one should not think of t
planes as ‘‘sliding through’’ the intermediate states.

Figure 3 shows the application only to theperfect-crystal
configurations where energy-matching is guaranteed@43#. In
general~that is, for ‘‘typical’’ configurations: see Fig. 4 fo
an example! the two configurations related by the LS oper
tion will not be energy matched: since adjacent planes
translated differently, the translations may—indeed, w
overwhelming probabilitywill—map a realizable configura
tion ~of one structure!, in which there are no overlappin
spheres, onto an unrealizable configuration~of the other! in
which there are overlaps. A MC lattice switch ‘‘move’’ wil
be rejected formostconfigurations. But not quite all: gate
way configurations~configurations that are energy match
@29# to their conjugates! must exist, in significant measure. I
particular, it is clear on grounds of continuity that config
rations ‘‘close enough’’ to perfect-crystal form must fall int
this category. One might thereforechoose these ‘‘small-
displacement’’ configurations to act as the gateway sta
and define a multicanonical weighting procedure acco
ingly. However, one can avoid having to make this expli
choice, and, instead, let the systemfind gateway configura-
tions itself. To do so we must define a measure of the m
match between the energies of the configurations linked
the transformation.

In the present context that mismatch is quantified by
number of pairs of overlapping spheres created by the tra
formation. To that end letM ($uW %,a) denote the number o
overlapping pairs associated with the displacements$uW %
within the structurea. And define@44#

M~$uW %![M ~$uW %,hcp!2M ~$uW %,fcc!. ~16!

SinceM ($uW %,a) will necessarily be zero for any realizab
set of displacements of structurea, theoverlap order param-
eterM is necessarily>0(<0) for realizable configurations
of the fcc ~hcp! structure. Figure 4 provides a concrete e
ample. The gateway configurations may then be identifi
~withoutprejudging their microscopic character! as the set of
configurations for whichM50: a displacement pattern$uW %

d
g

l

e

In

by

FIG. 4. The LS transformation applied to a ‘‘typical’’ configu
ration. The crosses identify the ‘‘lattice sites’’; the small circl

locate the sphere centers in this configuration of displacements$uW %.
This configuration is realizable~gives no overlaps! in the fcc struc-
ture; under the LS transformation it is mapped onto an~unrealiz-
able! hcp configuration with three overlapping pairs of hard sphe
~shown with dashed boundaries!. Thus, for this configuration, the

overlap order parameterM($uW %)53 @Eq. ~16!#.
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PRE 61 911LATTICE-SWITCH MONTE CARLO METHOD
for which M50 is realizable inboth structures~energy
matched!. A LS MC step initiated from anM50 configu-
ration will be accepted; if initiated from outside this set
configurations it will be rejected.

The sampling algorithm must thus be multicanonica
customized so as to enhance the probability along a noti
line in M space, extending from the ‘‘equilibrium’’M val-
ues~reflecting the number of overlaps created by a LS act
on a typical configuration! through to theM50 gateway
configurations. This aim is realized by augmenting the s
tem energy function Eq.~1!:

E~$rW%!→E~$rW%!1h„M~$uW %!…[Ẽ~$rW%! ~17!

whereh(M),M50,61,62••• constitute a set of multica
nonical weights@15#. These weights need to be chosen so
to allow the system to access theM50 gateway configura-
tions, and thence~through the LS! the full joint configuration
space of the two structures. Thedesiredratio of configura-
tional weights, which reflects thecanonical distribution
P(MuN,V) @Eq. ~12!# may then be estimated from themea-
sured multicanonicaldistribution,P(MuN,V,$h(M)%) with
the identification

Rfcc,hcp~N,V!5

(M.0
P~MuN,V!

(M,0
P~MuN,V!

5

(M.0
P~MuN,V,$h~M!%!eh(M)

(M,0
P~MuN,V,$h~M!%!eh(M)

.

~18!

Here the exponential reweighting of the multicanonical d
tribution folds out the bias associated with the weigh
whose residual effects are then simply as desired—the
moval of the ergodic barrier between the two branches of
distribution.

C. Representations: tuning the lattice switch

We have presented the LS method in its simpl
realization—the one we have used for most of the stud
reported here. We now outline two important respects@45# in
which some degree of generalization is possible, and ma
desirable, in subsequent applications. Both involve
choice ofrepresentationof the LS transformation.

We have already alluded to the first point: there are m
forms of lattice-to-lattice mapping. It is clear that the ef
ciency of the method will depend significantly upon the ma
ping chosen. Evidently the choice should be made so a
match up, as closely as possible, theenergyof the two con-
figurations it links. In the context of hard spheres this aim
realized by choosing the mapping which gives the smal
equilibrium overlap count~meanuMu value!, which gives a
measure of the entropic barrier that has to be negotiate
the multicanonical procedure. The smaller this barrier,
shorter is the path to the gateway configurations from wh
al
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a successful LS may be launched. Since the multicanon
simulations traverse this path only slowly~essentially diffu-
sively, at best! the gains here are potentially substantial. It
intuitively clear that the scheme described above will ful
this criterion well: in this representation, the LS transla
close-packed planes bodily, so it can create overlaps o
between spheres associated withdifferent planes. But it is
useful to explore other schemes—partly to check that ther
no significantly better alternative, but principally to unde
stand the different factors that control the efficiency. W
have done so; the results are to be found in Sec. IV A.

There is a second—less obvious—generalization of
framework. In the simple realization, the particle positio
are written in the ‘‘lattice plus displacement’’ representati
provided by Eq.~4!. The LS operation then maps a config
ration of one structure onto a configuration of the other w
the sameset of displacements. This is unnecessarily rest
tive. More generally we are at liberty to write, in place of E
~4!,

rW5RW a1Ta
•uW , ~19!

where rW,RW a, and uW are now column vectors with 3N ele-
ments andTa is a 3N33N non-singular matrix, whose form
~possibly$uW %-dependent! is at our disposal. Equation~5! is
then replaced by

V~N,V,a!5)
i

F E
a
duW i G•detTa)̂

i j &
Q~r i j 2D !. ~20!

From the standpoint of the~standard! single-phase part of the
MC procedure, this change in representation is equivalen
changing the form of the configurational energy:

E~$rW%!→E~$rW%!2 ln@detTa#, ~21!

This change introduces some computational overhe
which could be substantial if theT transformation is not
local. The potential pay off lies in the LS part of the M
procedure. One might hope to be able to tune the form of
T matrix so that ‘‘typical’’ configurations of the one struc
ture are mapped~by LS! into ‘‘typical’’ configurations of the
other. In the case of the hard sphere problem, however,
results~Sec. IV A! suggest that there is little to be gaine
here by this kind of tuning.

III. IMPLEMENTATION

A. Monte Carlo procedures

First we consider the procedure for MC sampling of t
particle displacements, for a given structure~set of lattice
vectors!. As discussed in Sec. II A this sampling should,
principle, satisfy some appropriate configurational constra
@46#. In our original studies@30# we chose to implement this
constraintexplicitly, through our sampling distribution: can
didate displacements were drawn from a flat~‘‘top hat’’ !
distribution. This procedure can be made to work. But
constraint explicitly breaks the translational invariance; a
one must deal with the consequences. In particular the c
figurational integral effectively being evaluated thendepends
upon the location of the center of mass and thence upon
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912 PRE 61BRUCE, JACKSON, ACKLAND, AND WILDING
top-hat cutoff; this dependence sets in when the displa
ment acquired by the center of mass, in the course of its s
diffusive motion, becomes comparable with the top-hat c
off. One can avoid this problem simply by fixing the cent
of mass. Our failure to do so in Ref.@30# led to results which
differ significantly from those we present here. In the stud
reported here we have chosen the ‘‘implicit’’ realization
the configurational constraint~practically, but not conceptu
ally equivalent to ignoring it! which rests~Sec. II A! on time
scales. Spheres were chosen at random, and trialchangesto
the current displacement drawn from a uniform distributio
The displacement update is accepted according to the
tropolis prescription@3#

pa~$uW %→$uW 8%!5min$1,exp@2DẼ~$rW%!#% ~22!

whereẼ($rW%) is defined in Eq.~17! @47#. In addition to the
constraint that the update should yield a realizable confi
ration of the current phase, this acceptance probability
flects the chosen weights which are defined~Sec. III B ex-
plains how! on the space of the overlap order parameterM
@Eq. ~16!#. To minimize the computational time spent dete
mining how a proposed move affects the value ofM we
used a local overlap array, holding information on whi
neighbors of a given sphere currently overlap with th
sphere in the conjugate configuration generated by a LS

The representation of the close-packed limit provided
Eq. ~10a! can be handled with only minor amendments: t
constraintr i j .D identifying realizable configurations is re
placed by a constraint on the scaled displacement-differe
coordinatesui j

uu .21. The overlap order parameter~measur-
ing the number of times the hard sphere constraint is viola
in the conjugate configuration! is redefined accordingly. In
this limit particle ‘‘interactions’’ ~encounters! may occur
only between immediate neighbors. At other densities
allowed for the possibility of encounters between nomi
second neighbors. We found, however, that although
number of such encounters grows rapidly with the appro
to the melting density, the consequences for the relative
tropy of the two structures is insignificant under the con
tions studied here@48#.

In addition to particle moves the constant-pressure sim
lations require updates of the simulation-cell parameters
such an update~implemented on average once per sweep! a
trial set of cell parameters are selected, and accepted
probability @49#

pa~V→V8!5min$1,exp@2DẼ~$rW%!2P!DV

1N ln~V8/V!#%, ~23!

whereV8 is the volume associated with the trial paramete
Note that this kind of update—a dilation—changesẼ($rW%)
both trivially ~so as to forbid moves causing ‘‘real’’ over
laps! and more subtly through changes in the count of
overlaps in the conjugate configuration. A volume upd
thus requires recalculation of the entire local overlap arra

Now consider the lattice switch. The switch may
viewed as an updating of the ‘‘lattice’’ typea, regarded as a
stochastic variable. The prescription for such an updat
quite simple. After every particle update the value ofM is
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checked~it is already known!. The LS is performed if~and
only if! the gateway conditionM50 is satisfied.

B. Calculating the weights

The determination of an acceptable set of multicanon
weights @15# can be accomplished in a number of ways
none, seemingly, entirely systematic. We describe briefly
techniques we have used in the present study. Figure 5
vides some illustration. For further details and references
other work the reader is referred to Refs.@15,26,50,51#.

The simplest method is the visited-state~VS! technique
@50#. In this approach a suitable set of weights is evolv
through an iterative process~Fig. 5!, the next set of weights
depending upon the distribution of the~overlap! order pa-
rameter over the macrostates visited using the current se
weights. This process is repeated until the weights yiel
distributionP(MuN,V,$h(M)%) that is effectively flat. This
method proved quite adequate for our smallest system.

For larger systems, however, we found it more efficient
appeal to the transition probability~TP! method@50#. In the
simplest realization of this method the simulation is initiat
from a ‘‘cold’’ ~zero displacement! configuration~a member
of the M50 macrostate! for one structure. In the course o
its subsequent evolution towards equilibrium for that stru
ture the numbers of transitions between differentM mac-
rostates are recorded, and subsequently used to constru
estimator of the macrostate-transition-probability matr
This TP matrix can be used to estimate the macrostate p
ability distribution and thence to provide an estimate for a
of weights~Fig. 5!, which can in turn be refined via VS. Fo
our intermediate size system this method worked well.

In the case of our largest system we found it necessar
modify the method somewhat, so as to limit the rate at wh

FIG. 5. Illustration of the weight-generation process, for a s
tem of N5216 hard spheres. The points marked VS are the res
of the first 3 iterations of the visited-states algorithm, initiated fro
an fcc equilibrium state. The points marked TP emerge from
application of the transition probability method. The solid lin
shows a refined~usable! set of weights.
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PRE 61 913LATTICE-SWITCH MONTE CARLO METHOD
the simulation passes throughM space. One way of doing
this is to constrain the system to macrostates with ove
order parameters below some ‘‘barrier’’ value, which
gradually incremented~moved ‘‘out’’ in M space!, at inter-
vals of the order of the equilibration time.

By fiat the two structures have the same weights forM
50. In principle, the weights associated with the two stru
tures for nonzero uMu are different @i.e., h(M)Þh
(2M)], and have to be evolved separately. In practice
weights of the two structures are very similar—a reflect
of the similarity of the entropies of the two phases. Con
quently, one set of weights provides an excellent first
proximation to the other, for refinement by VS.

C. Simulation details

The specific form of the LS operation we have chos
~Fig. 3! imposes restrictions on the geometry of the syst
simulated: with normal periodic boundary conditions the s
tem must comprise integral multiples of 6 close-pack
planes. It is possible to avoid this restriction by using mo
elaborate boundary conditions@14#, but we chose to avoid
this complication and simulate systems comprising3

5216, 12351728, and 18355832 spheres. Simulations we
performed at two densities, namely,@see Eq. ~7!# r̃

50.7778@47#, and r̃51, the close-packed limit.
The maximum step size for displacement updating w

chosen so as to minimize the autocorrelation time of
overlap order parameter@Eq. 16#. We found a maximum step
size of 0.13D produced the best results atr̃50.7778, while a
value close to unity was found to be appropriate in the clo
packed limit, in the representation~and scaled units! given in
Eq. ~10a!.

A significant proportion of our simulation time was d
voted to the process of weight-determination. For our larg
system we used 106 Monte Carlo sweeps~MCS! to generate
a first ~TP! estimate of the weights, with a further 53106

MCS devoted to weight-refinement using VS.
The free-energy differences of interest were then de

mined by further simulations in the multicanonical
weighted ensemble. For each system~density, and size! we
performed a series of runs each long on the scale of
autocorrelation time of the overlap order parameter. Eac
these runs then provides an independent estimate of
~logarithm of the! probability ratio required@Eq. ~18!#. The
standard deviation of these estimates provides a basis
assigning an associated statistical uncertainty. Implemen
this stage required simulation times ranging from;2.5
3108 MCS for N5216 to;43107 MCS for N55832.

IV. RESULTS

A. The effects of the representation

As discussed in Sec. II C the LS operation can be imp
mented with different choices of representation of the latt
mapping or the particle displacements@45#. The efficiency of
a lattice mapping is measured~inversely! by the equilibrium
overlap count. Table I shows results for a variety of ma
pings, chosen to expose the different factors that control
mapping efficiency. Mapping number 1 is the one describ
p
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in Fig. 3, and used throughout this work: the notation
2 tW,1 tW) signifies that the three pairs of planes counting fro
the top of Fig. 3 are translated respectively by 0,2 tW, and1 tW.
A similar convention is used to label mappings 2 and 3.
mapping 4~‘‘random-plane’’! an hcp configuration is gener
ated by taking an fcc configuration and restacking its clo
packed planes in a random order, in an hcp pattern. In m
ping 5 ~‘‘random-site’’! an hcp configuration is generated b
mapping the particle displacements in an fcc configurat
randomly on to the sites of an hcp lattice.

The random-site mapping~number 5! shows the larges
overlap count. One can account for its value, rather well,
regarding the particle displacements as isotropic, Gauss
and independent of structure@52#, and estimating the prob
ability that two particles associated with nearest-neigh
sites, and with displacements drawnrandomlyfrom this dis-
tribution, will overlap.

Using the random-plane mapping~number 4! cuts the
overlap count by a factor of~a little more than! 2 with re-
spect to random site. This efficiency gain simply reflects
fact that of the 6N potential overlaps between nea
neighbors, only the 3N associated with neighbors in differen
~but adjacent! planes can now contribute.

Mapping 3 simply generates one fcc configuration fro
another~it is useful only because it is informative!: its over-
lap count is cut by a further factor of 2. This reflects the fa
that this mapping~similar to mappings 1 and 2! moves close-
packed planes inpairs, thus guaranteeing no overlaps b
tween the two members of each pair.

Mappings 2 and 1 show further—smaller but still prac
cally useful—cuts in the overlap count. The origin of the
gains is more interesting. It is clear that they must reflect
size of the translation vector used: mappings 1 throug
differ only in this respect. This vector controls the extent
the shear which the mapping introduces between succes
pairs of planes. The following interpretation seems reas
able. The displacement patterns in adjacent planes will
correlated to some extent, with undulations in one surf
~the z components of the displacements! matched to undula-
tions in its neighbor. The smaller the shear, the more clos
these undulations willremainmatched to one another~in the
conjugate configuration!, and the smaller the overlap coun
With increasing shear, this advantage is lost and the beha
should~and indeed does! approach the limit~one quarter of
the overlap count for mapping 5! one would expect in the
absence of such correlations. The fact that this ‘‘approac
is already apparent in the performance of mapping 2 is c
sistent with the fact that the measured correlation length

TABLE I. The efficiency of different lattice mappings~for N

51728 andr̃50.7778), as measured by the number of overla
~per sphere! that they generate. Refer to the text for details.

mapping description effect m5M/N

1 (0,2 tW,1 tW) fcc→hcp 0.150~1!

2 (0,2tW,22tW) fcc→hcp 0.183~1!

3 (0,3tW,23tW) fcc→fcc 0.194~1!

4 random-plane fcc→hcp 0.373~2!

5 random-site fcc→hcp 0.820~3!
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914 PRE 61BRUCE, JACKSON, ACKLAND, AND WILDING
the surface undulations at the density concerned is foun
be close to the magnitude of the translation vectortW.

These results help to clarify the factors which control t
overlap count of the mapping~number 1! we have actually
used. It is tempting to attribute the overlaps to the fact t
the LS (fcc→hcp, say! maps each particle from an environ
ment in which adjacent close-packed planes have diffe
stacking labels~A and C, say! to one in which they have the
same label~C, say!. The results for mappings 1–3 show th
it would be misleading to think this way. The overlaps sim
ply reflect the numbers of particles that ‘‘see’’ a new ad
cent close packed plane~irrespective of its label!, and the
extent to which it is ‘‘new.’’ This is the reason for the sim

FIG. 6. Distribution of the separationd between adjacent close

packed planes in a system of 216 spheres atr̃50.7778, in the
equilibrium hcp and fcc macrostates, and in the gateway (M50)
macrostate. The separation is measured with respect to the eq
rium separationd0 and is expressed in units of the sphere separa
d @57#.
to

t

nt

-
-

larity between the overlap counts for the two structures~Sec.
IV C!. It shows, moreover, that any simple@53# tuning of the
displacement representation~the choice ofT matrix! is likely
to be of no advantage here@54#.

B. How it works: the gateway configurations

A LS operation will work ~be accepted as a MC move!
only when launched from a small subset of the configu
tions actually visited: these, by definition, are the ‘‘gatew
configurations.’’ As noted earlier, one could identifya priori
configurations~those characterized by ‘‘small enough’’ dis
placements! which fall into this set. But we have elected
rather, to let the system~the algorithm! identify them on the
basis of their defining characteristic—that they have z
overlap order parameterM @28#. It is then interesting to
investigate themicroscopiccharacteristics of the configura
tions picked out by this constraint. Figure 6 shows the d
tribution of the separationd between adjacent close-packe
(x-y) planes@55#, for M macrostates corresponding to equ
librium fcc, equilibrium hcp, and gateway (M50) regions.
The macrostates corresponding to the equilibrium cry
structures have similar, near-Gaussian,d distributions. In
contrast, for the gateway macrostate the distribution is bim
dal: in this macrostate, some planes are systematic
moved closer to one another, while~in equal measure! others
are shifted apart. On closer examination one finds that
the planes which aretranslated togetherby the LS@e.g., the
pair of planes marked~i! in Fig. 3# that fall into the first
category, while the planes that aretranslated differentlyby
the LS@e.g., the pair of planes marked~ii ! in Fig. 3# fall into
the second. The evolution, withM , of the mean plane sepa
ration ~for both categories! is shown in Fig. 7~a!. The behav-
ior thus unearthed is entirely reasonable. The LS opera
can only create overlaps between neighboring planes wh
are translated by different amounts~sheared with respect to
one another!. The algorithm resolves the task set by the b
towardsM50 by moving these pairs of planes~the ones
vulnerable to overlaps! further apart, at the expense of

lib-
n

ue.
FIG. 7. ~a! The mean value of the separationd between adjacent close-packed planes in a system of 216 spheres atr̃50.7778, for
macrostates of differentM. The separation is measured with respect to the equilibrium separationd0 in units ofd @57#. Category~i! planes
~see Fig. 3! are translated together by LS; category~ii ! planes are translated through different amounts by LS.~b! The evolution withM of
thec/a ratio @58# in a constant-pressureensemble@with the same parameters as~a!#. The horizontal line marks the ideal-close-packed val
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PRE 61 915LATTICE-SWITCH MONTE CARLO METHOD
compression of the others@56#. In simulations conducted a
constant pressure this effect~still present! is supported by a
second. Figure 7~b! shows that the algorithm now exploit
the additional degrees of freedom~the shapeof the simula-
tion cell! to locate gateway states with values of thec/a ratio
enhanced above the ideal close-packed value@58#. Again, the
advantages with respect to the switch are clear.

It is tempting to say that the sampling is intelligent. In a
event it is clear that the algorithm locates and utilizes c
figurations which it would be difficult to exploit explicitly in
the design of the switch operation.

C. Entropies of crystalline structures

The essential output of a LS simulation is in the form
the normalized probability distribution of the overlap-ord
parameter, reweighted to remove the bias in the multican
cally weighted distribution actually measured. Figure
shows the results for this distribution~at r̃50.7778) for
three differentN values. As one would expect the distrib
tions each comprise two peaks~one associated with eac
phase! each of which isnearly Gaussian@59# and sharpens
with increasingN @60#. Note the close correspondence b
tween the equilibrium overlap counts for the two structur
This result is notrequiredby definition, or any obvious sym
metry. Rather it should be seen as a further manifesta
~the smallness of the entropy difference between the ph
is the prime one! of the similarity of the local particle envi
ronments in the two structures.

The relative weights of the two peaks is a direct meas
of the difference between the entropies of the two structu
@Eqs.~11!, ~12!, ~18!#. Since the entropies are extensive t
ratio of the peak weights grows exponentially withN @61#;
the fact that~in this case, at least for our smaller systems! the
two peaks can even be displayed on the same scale

FIG. 8. The probability distribution of the overlap order para
eter per particle,m[M/N, for systems of three differentN values

at r̃50.7778. The lines provide Gaussian guides to the eye;
statistical uncertainties on the data points are smaller than the
bol size. The entropy difference is identified from the logarithm
the ratio of the integrated weights of the two peaks. The hcp p
for the largest system is not visible on this scale.
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reflection of the exceptionally delicate balance between
two entropy densities.

Figure 8 allows one toseethat fcc is the thermodynami
cally preferred structure. This conclusion is expressed qu
titatively in the results gathered in Table II. Our results
r̃50.7778 correct those of our earlier work@30#, as ex-
plained in Sec. III A. They are in full accord with the resul
~both LS- and IM-based! reported by Pronk and Frenke
@31#. The close correspondence between the results foN
51728 andN55132 confirms that the former system is a
ready representative of the thermodynamic limit. Table
also shows the results of our studies at the close-pac
limit, using the hard-dodecahedron representation@Eq.
~10a!#. Our results seem at variance with the IM-based res
of Woodcock@64#, even allowing for the large uncertaint
attached to that result. They are close to those~based on LS!
reported by Mau and Huse@14#. But the differences~for the
smaller systems, particularly! appear to be statistically sig
nificant @65#. Figure 9 gives an alternative view of thes
results. It utilizes the parametrization of the measured p
sure difference between the two phases provided by Spe
@66# to determine the entropy difference, as a function
density,given the entropy difference at a chosen referen
density; we have used the results of the present work ar̃
50.7778.

Table III shows the results of our studies in the const
pressure ensemble. The quantity of interest here is the di
ence between the Gibbs free energy densities at the ch
pressure, which follows from the relevant distribution wi
the aid of Eq.~15!. In fact the Gibbs free energy densit
differenceDg for a given pressure, and the entropy dens
differenceDs at a physical density that is the thermodynam

e
m-
f
k

TABLE II. The difference in the entropy densities of the fcc an
hcp structures,Ds[Dsfcc,hcp @Eq. ~11!#; the associated uncertaintie
are in parenthesis. The results of the present work~PW! supercede
those of Ref.@30#. The results of Ref.@64# supercede those of Ref
@10#. IM stands for integration method; SM is the lattice she
method of Refs.@14,63#.

r/rCP N Ds(1025kB) Method Ref.

0.731 512 85~10! SM @14#

0.736 12000 230~100! IM @64#

0.736 12096 87~20! IM @62#

0.739 512 90~4! LS @14#

0.7778 216 132~4! LS @31#

0.7778 1728 112~4! LS @31#

0.7778 1728 113~4! IM @31#

0.7778 216 133~3! LS PW
0.7778 1728 113~3! LS PW
0.7778 5832 110~3! LS PW
1.0 12000 260~100! IM @64#

1.0 512 110~20! SM @14#

1.0 64 91~5! LS @14#

1.0 216 107~4! LS @14#

1.0 512 119~3! LS @14#

1.0 1000 113~4! LS @14#

1.0 216 131~3! LS PW
1.0 1728 125~3! LS PW
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916 PRE 61BRUCE, JACKSON, ACKLAND, AND WILDING
conjugate of that pressure for one of the phases, differ~in
magnitude@67#! by terms that aresecond orderin the pres-
sure difference between the two phases. That pressure d
ence is extremely small@66#, as is the difference between th
measured densities of the two structures~Table III!. In these
circumstances one would expect the magnitude ofDg to fall
on the Ds plot in Fig. 9; and indeed, within the residu
uncertainties, it does.

V. DISCUSSION: REVIEW AND PROSPECTS

In the work described here we have been concerned
with a systemof long-standing interest—the hard sphe
crystal—and amethod—lattice-switch Monte Carlo— with
potentially wide applicability. We divide our concluding dis
cussion accordingly.

The full agreement between the present work and tha
Ref. @31# leaves little doubt that the equilibrium entropy di
ference between the two close-packed structures has fin
been established securely and with high precision—at l
at one density. Although a small discrepancy with respec
the results of Ref.@14# remains, the accord of our close
packed limit results with those established using press
difference measurements@66# suggests that the curve in Fig
9 provides a relatively complete and trustworthy picture
the density dependence.

Notwithstanding the simplicity of the model, these resu
do have implications for experimentally realizable system
The immediate relevance to atomic systems is tenuous@68#,
but the model has been widely used to account for the
havior of assemblies of ‘‘hard,’’ ‘‘spherical’’ colloidal par
ticles @32#. Since the predicted entropy-density difference
so small there are potentially many ways~residual interac-
tions between the spheres; polydispersity! in which the ap-
plicability of the theory may be compromised. But, of thes
it seems that the most significant issues to be addresse
to do with scales—length and time.

FIG. 9. The difference in the entropy densities of the fcc a
hcp structures,Ds[Dsfcc,hcp @Eq. ~11!#, as a function of reduced

densityr̃. The data points are as given in Table II. The solid line
the result of an integration of the pressures of the phases@66#. Note

that this line passes through our result atr̃50.7778 byconstruc-
tion.
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First, the lengths. In the experiments reported in Ref.@69#
the colloidal particles have diameters of order 1027 m and
the samples comprise crystallites with linear dimensions
order 1025 m. The number of particles in such a crystalli
(N;106) is large compared to those in our simulatio
which is ~as we have seen! sufficient to allow us todeduce
properties of the thermodynamic limit. But it isnot large
enough to guarantee that the behavior displayed will actu
be that of the thermodynamic limit. To see this—and
principal implications—one needs to consider the stability
the perfect fcc crystal with respect to hcp-type stack
faults. Following Ref.@69# we may introduce a parametera
@70# measuring the probability that a chosen close-pac
plane sits within an fcc environment as distinct from the h
environment. A simple argument~Appendix A! using the
pseudospin parametrization of stacking patterns provide
Ref. @14# then yields the result

a5
1

2 S 11tanhFN'Ds

2 G D , ~24!

whereN' is the number of particles in a close packed lay
and Ds ~a function of r̃) is the fcc-hcp entropy difference
per particle, as given in~and in the units of! Table II. The
thermodynamic ideal (a51) is thus realized only to the ex
tent thatN'Ds is large compared to unity. For the leng
scales given above,N'Ds.1. The obvious implications are
qualitatively consistent with the observations reported
Ref. @69# which showa values~deduced from Bragg scat
tering intensities! ranging from 0.5@signaling essentially
random-hexagonal-close packing,~rhcp!# through toa50.8.

The observed spread ina values reflects, presumably, th
issue of time scales. The smallness of the entropy differe
~which supplies the kinetic driving force towards the equili
rium state! suggests that the equilibrium behavior will b
observed only in samples which are grown sufficien
slowly and~or! given sufficient time for subsequent annea
ing @71#. The results of Ref.@69# do indeed suggest a corre
lation between observeda value and the slowness of th
growth process. Experiments done in microgravity@72#,
where growth processes are greatly accelerated, yield es
tially randomly close-packed crystals.

Now let us turn to the lattice-switch method. There a
two questions here. One, does the method represent a sig
cant advance with respect to existing methods? Two, i
generally applicable?

The main alternative method~the benchmark agains
which others need to be assessed! is probably integration
along a reference path, of which the work reported in R
@31# represents, to our knowledge, the most refined exam

TABLE III. The difference in the gibbs free energy densities
the fcc and hcp structuresDg[Dgfcc,hcp @Eq. ~15!#; the associated
uncertainties are in parenthesis.P! gives the pressure@42# in units
of kBT/D3.

P!(D23) r̃hcp r̃ fcc
N Dg(1025kBT)

14.58 0.7776~1! 0.7775~1! 216 2113 ~4!

14.58 0.7770~3! 0.7774~2! 1728 2112 ~3!
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If one compares the two techniques~LS and IM! on the basis
of precision-for-computational-buck there seems to be
clear winner in the hard-sphere studies to date: Ref.@31#
reports calculations using both methods that achieve com
rable levels of precision on the basis of comparable com
tational time. But one should note that the entropy differen
ultimately determined is somefour orders of magnitude
smaller @73# than the separate entropies of the two phas
determined by IM. One can see this as a testimony to
care with which the recent IM studies have been carried
or ~as suggested in Sec. I! as a strong indicator that anoth
approach using an interphase path is called for. There
also two other counts—both somewhat subjective—
which we suggest that the LS approach is superior. Firs
seems to us relatively illuminating~by comparison with IM!
to read-off the result for a free energy difference direc
from a figure similar to Fig. 8 whichshowswhat it means.
Secondly it also seems to us that LS wins in regard to
transparency of the uncertainties to be attached to its res
The LS error bounds represent purely statistical uncertain
associated with the measurement of the relative weight
two distribution peaks. The IM error bounds have to agg
gate the uncertainties associated with different stages o
integration process.

As regards the second question, we expect that
method will, with appropriate extensions, be widely app
cable. The first extension must clearly be to accommod
soft potentials. The LS operation will then need gatew
configurations in which the energies of the two structu
~measured with respect to their ground-state energies—o
deedany fixed reference energy! are closely matched@43#.
The ‘‘overlap order parameter’’ will need to be redefin
accordingly. With no more than this degree of elaborat
the method should be applicable immediately to investig
the widespread ‘‘competition’’ between fcc and hcp orderi
in the phase behavior of the elements@74#.

More generally, moving beyond the space of fcc-h
structures, the choice of lattice-to-lattice mapping will r
quire some thought. Mappings which preserve the rela
positions of significant subsets of the particles~the analog of
the close-packed planes! are likely to be optimal. The licens
to choose ones representation of the displacements~Sec.
II C! may also prove useful. Simple transformations@53# will
help if the mapping takes particles between environment
which the spectrum of single-particle displacements is s
nificantly different. In such cases one might envisage usin
MC-annealing procedure to refine the choice of represe
tion. The use of normal coordinates has some advanta
here—but possibly not enough to offset the fact that the
teraction potential is nonlocal when expressed in Fou
space.
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APPENDIX A: DISPLACEMENT ENTROPY VERSUS
STACKING ENTROPY

Consider a system ofN hard spheres arranged inNi close-
packed layers ofN' particles. Following Ref.@14# one may
conveniently index each of the close-packed layers wit
pseudo-spin~Ising-like! variable s, where s i51 signifies
that layer i has an fcc environment~the two immediately
adjacent layers are not aligned with one another! while s i
521 implies an hcp environment~adjacent planes are
aligned with one another!. The probability of a particular
stacking sequence$s% ~if these variables may properly b
regarded as annealed! then satisfies

ln P~$s%uN,V!5S~N,V,$s%!1const, ~A1!

whereS(N,V,$s%) measures the entropy associated with
configurations~displacements! consistent with the particula
structure$s%. Following Ref.@14# this entropy~we will refer
to it here as ‘‘displacement entropy’’! can usefully be written
in the form of an expansion:

S~N,V,$s%!5Ns01N'h(
i

s i1N'J(̂
i j &

s is j1•••.

~A2!

The expansion is effectively ordered in therangeof the en-
tropic interlayer ‘‘interactions’’: the ellipsis represents co
tributions from interactions~microscopically, displacement
displacement correlation functions! extending over more
than 4 layers. The analysis of Ref.@14# indicates that the
series converges quickly, except close to melting. If we
glect the interaction terms altogether we may make the id
tification

h5
1

N'Ni
@S~N,V,$s511%!2S~N,V,$s521%!#

5
Dsfcc,hcp

2
~A3!

and, from Eq.~A1!,

^s&5
1

N (
$s%,i

P~$s%uN,V!s i5tanh@N'h#

5tanhFN'Dsfcc,hcp

2 G ~A4!

from which Eq.~24! follows. The correspondence with a 1
paramagnet is clear. The familiar competition~between ori-
entation energy and entropy! is played out here as a compe
tition between displacement entropy and stacking entro
with N' playing the role of an inverse temperature.
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